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Abstract - Passive macromodeling of microwave compo-
nents, high-speed packages and interconnect modules charac-
terized by simulated/measured data has generated immense
interest during the recent years, This paper presents an effi-
cient algorithm for addressing passivity of macromodels from
simulated/measured data, based on linear formulation. Also
one of the critical issues involved in such macromodels is the
passivity check and compensation. For this purpose, a new
theorem and an efficient algorithm is presented. Examples are
presented fo demonstrate the validity and efficiency of the
proposed algorithm.

I. INTRODUCTION

Recently, characterization and simulation of linear
subnetworks based on measured/simulated (tabulated)
data (obtained either directly from measurements or
from rigorous full-wave electromagnetic simulation)
has become a topic of intense research. Important
applications of such a characterization include micro-

wave devices, high-speed packages, vias, nonuniform

transmission lines and on-chip passive components,
such as inductors and transformers [1]-[6]. However,
transient simulation of such frequency-dependent tabu-
lated data in the presence of nonlinear devices to gbtain
a global electrical assessment is a CPU expensive pro-
cess due to the mixed frequency/time problem. Promi-
nent approaches to solve this difficulty [1]-[10] are
based on approximating the tabulated data through
rational-functions and subsequently synthesizing a
SPICE compatible macromodel/netlist from such an
approximation, However, the primary challenge in such
approaches is ensuring the passivity of the maromodel.
Passivity is an important property, because stable but
non-passive models may lead to unstable systems when
connected to other passive components.

Conventional approaches in the literature on impos-
ing passivity constraints lead to nonlinear optimization
formulation, which can be CPU expensive [2]. Alterna-

_ tive approaches use constraints such as, every first or
second order pole-residue pair must strictly conform to
passivity relations, which is sufficient but not neces-
sary, [3]. It is to be noted that, most practical circuits
do not obey these conditions and strict enforcement of
these conditions may lead to convergence problems,
inaccurate and CPU expensive macromodels. Tech-
niques such as the one in [5] formulate the macromodel
synthesis problem as linear unconstrained problem.
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«In these algorithms [2]-[5], macromodels are checked
for any passivity violation and compensated if neces-
sary. Hence the success of these algorithms depends on
the quality of the macromodel prior to post-processing,
that is, the extent of their conforming to passivity con-
dirions. Post-processing can be quite effective if the
passivity violation is very minor; on the other hand, if
the violation is significant, it can lead to inaccurate
macromodels. Another critical issue involved here is the
passivity check. Traditional approach for this purpose is

. based on frequency-sweep of eigenvalues of the real-part of

the admittance matrix (Re(Y(s})) of the macromodel. How-
ever, this approach suffers from several drawbacks, such as
up to what frequency to sweep, how fine the sweep should
be and how to identify the exact locations of violation.

This paper describes an algorithm for passive macro-
modeling of microwave subnetworks characterized by tab-
ulated data, with the following new contributions:

1) A new set of linear passivity conforming constraints are
presented to ensure macromodel passivity. 'Since the
constraints are linear, macromodel generation 1is
highty CPU efficient as compared to using traditional
nonlinear constraints.

2) A new theorem is presented which enables systematic
passivity check and compensation. It enables: (a) per-
forming passivity check without requiring any frequency
sweep of eigenvalues of Re(¥Y{s)), (b) indentifying exact
locations of any negative eigenvalues, (c) identifving any
negative eigenvalues of Re(¥(s)) independent of where
they are occurring in the frequency spectrum.

The new theorem is based on formulation of the Hamil-
tonian matrix of the state-space equations representing the
macremodel, The knowledge of the exact locations of neg-
ative eigenvalues of Re(¥(s)) is very crucial as it greatly
helps the passivity-compensation process. Numerical
examples arc presented to validate the efficiency and accu-
racy of the proposed algorithm.

1. PROBLEM FORMULATION

The tabulated data can be multi-port scattering (8),
admittance (Y), impedance (Z), transmission (T} or
hybrid (H) parameters. For the ease of presentation, in
this paper it is assumed that the Y-parameter data is given.

. The admittance matrix of a m-port subnetwork can be writ-

ten in terms of a rational-approximation as
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The challenge here is to ensure both the accuracy and
passivity of the multiport macromodel. The loss of mac-
romodel passivity can be a serious problem because tran-
sient simulations may encounter artificial oscillations. A
network with admittance matrix ¥ (s) is passive [5], iff,

(@ Y(s) = Y*(s) ,where * ¥’ is the complex conjugate
operator.

(b) Y(s) 1s a positive real (PR) matrix, i.e., the product
2 Y'(s)+¥Y(s)1220 for all complex values of s
with Re(s)>0 and any arbitrary vector 2.

Condition (a) is automatically satisfied since the com-

plex poles/residues of the transfer function are always con- -

sidered along with their conjugates, leading to only real
coefficients in rational functions of ¥ (5) . However, ensur-
ing condition (b) is not easy. For the practical case of net-
works with symmetric admittance matrices, condition (b)
implies that:

Real(¥(s) = [Y'sH+Y()1/2 = F(s) ()

must be positive definite for all s with Re(s)>0.
III. DEVELOPMENT OF THE PROPOSED ALGORITHM

In order to ensure both accuracy and passivity of the
macromodel a new algorithm is developed. The first
step involves computation of multiport pole-set. The
second step computes the residues, subject to certain
linear constraints which help to ensure macromodel
passivity. The third step checks for any possible passiv-
ity violation and corrects in case of violation. A brief
discussion of these steps is given below.

Step1: Compuiation of Multiport Dominant Pole-Set

This' step uses the pole identification algorithm of the
vector fitting approach [7] to obtain an accurate set of
poles. Here, an initial guess of poles is considered and a
scaling function is introduced. With this initial guess of
poles, the scaled function is accurately fitted, from which
an accurate set of poles are computed. The algorithm
ensures that the multiport admittance matrix is evaluated
based on common pole set.

Step 2: Formulation of Residue Equations and Passivity
Conforming Linear Consiraints

In this step, residues are computed such that the macro-
model satisfies the passivity conditions outlined in section

II. Straight-forward application of passivity constraints can -

lead to nonlinear optimization problem. In order to over-

come this difficulty, the following linear constraints, which
help to retain the passivity of the macromodel are pro-
posed. Let w,,. be the frequency comesponding to the
highest given data poini. Let the common pole set (P) in
the ascending order be denoted as

P = I:pl,p2

(imag(pl) <..<..< imag(Pmax))
(imag(pmaxo)*( Wmax< im“g(pmaxl)) (3)

Pmaxe Pmax1---» pma.;l ’

Next, each ¥;; can be expressed using the pole-residue
relation and the frequency response as:

i j i ¥
S k

+ o+ —2
Spy—P1 Sa— P2

1]
= Y (s)s
S, Dg b

M pole-residue pair;
g —>  1otal number of poles; ppky—» 7 pole-residue pair;

L] i bulated data at A" frequency point s
s — given tabu q Y P R
V(s )

Equating both the real and imaginary parts of (4) sepa-
rately at all the data points, we can write

ij L
GI' Kl' = Wr ; or

6. Il |y
where the subscripts r and e correspond to the real and
imaginary parts, respectively, for the corresponding
parameters/formulations (vector K’ also includes the

direct coupling constant ¢"’). Equation (5) is solved sub-
ject to the following new passivity conforming constraints:

GK" = ¢ (5)

G:GKr',j ‘WI LJ c‘.’j >0: (a)
stich that, . s } for (i=})
B G K" 2y, (b)
& = o ©
}for (i#))
P = I:Pl, Py - pmaxCII’ (d}6)

Since the computed model matches the tabulated data (it
is assumed that the original data conforms to passivity con-
ditions) accurately up 0 pn.e, WE
2 [Re(Y(s)IZ=0 for Re(s)>0, in the
(0 € w<p,,..0) - Condition-{6a) is necessary 1o ensure that
2 [Re(Y(5))1220 at 5 = oo for Re(s) >0. Constraint- _
(6b) will guarantee that the real part of driving peint admit-

have
region

tances remains greater than =zero in the region
(0fw<w, ). Conditions-6(c,d) help to ensure
Z2 [Re(Y(s))]220 for Re(s)>0 in the region

(Pmax0<W<°°)'

1000



Enforcing the above conditions and performing linear
constrained optimization, will lead to passive macromod-
els for most cases of practical measured/simulated data. It
is important to note that, for macromodels thus generated,
the post-processing or compensation requirement is very
minimum. Also, since the constraints are linear, macro-
mode] generation is highly CPU efficient. However, it is to
be noted that, since the above constraints are not strict pas-
sivity enforcing conditions, there may be minor chances of
passivity violation, which may require post compensation.
The details of passivity check and compensation (third
step) are given in the next section.

IV, PASSIVITY CHECK AND COMPENSATION

New results are presented in this section which enable
systematic passive check and compensation. The main fea-
tures of these theorems are that, a) passivity check can be
performed without requiring any frequency sweep of eigen-
values of Re(Y(s)), b} can identify exact locations of any
negative eigenvalues Re(Y(s)), independent of where they
are occurring in the frequency spectrum. A brief discus-
sion of the new approach is given below, Using the m-port
pole-residue model (1), a state-space system with mini-
mum realization {10] can be obtained as +

mxn
%R

mxm

Ae RV Ce
Be ®"" De®X

1) = Ax(D)+Bu()
¥(t) = Cx(1)+Du(r)

: 1)
Theorem 1. The minimum realized system (A, B, C,D)
is passive iff the following Hamiltonian Matrix (M) [11]
has no imaginary eigenvalues,

A-BD+D)YC B(D+DY B
M- ®

cp+y'C A DY B

If it is found that the matrix M in (8) has any imaginary
eigenvalue, then the system is not passive. In this context,
a new theorem is introduced, which helps to identify the
exact locations at which real part of the transfer-function
(admittance) matrix ( F(s) - defined in (2)) becomes sin-
gular (i.e. where its eigenvalues become zero).

Theorem 2: F(juy) is singular, iff jey, is an imaginary
eigenvalue of M, provided D+DP'>0.

The detailed proof of above theorems is not given due to
the lack of space. In brief, using (2), (7) and (8), and after
certain manipulations, it can be shown that

der(D+ D Yderjol - M)
= det(jol ~ AyderGol + A Ydet(F(jw)) ©)
From (9) it is evident {under assumption that A has no
imaginary eigenvalue) that, if jo, is an cigenvalue of M,

then F(jo) is singular at je,. Which implies that an imagi-
nary eigenvalue of the Hamiltonian matrix M corresponds
to the frequency at which F(jw) is singular. Two succes-
sive imaginary eigenvalues (while arranged in ascending
order) of M define the frequency interval for which one of
the eigenvalues of F(jw) remains negative.

The information of the exact locations where an eigen-
value of F(jw) becomes zero (and start reversing its sign)
is very crucial as its knowledge will greatly help the pas-
sivity-compensation process. If a negative eigenvalue
spectrum exists, it could be easily corrected by inserting
additional artificial poles [5] and using the above informa-
tion. Alternatively, the above information can be vsed
to accurately define linear constraints for passivity
compensation [8], details of which is not given here
due to the lack of space. Having ensured the passivity
of the macromadel, it can be easily linked to nonlinear
simulators for performing transient analysis.

V. COMPUTATIONAL RESULTS

The proposed algorithm was performed on measured Y-
parameters {data is given up to 6GHz) of a 3-port distrib-
uted subnetwork [3]. Fig. 1 shows the accuracy compari-

son of the macromodel magnitude responses with the

original data, and they match accurately. If we use the con-
straint 6(b), the macromodel didn’t require any passivity
compensation. However, to illustrate the proposed passiv-
ity check algorithm of section III, we carried out the fitting
process without using constraint 6(b), in which case the
generated macromodel became non-passive. This was
tested using Theorem-1, and the complete eigenvalue dis-
tribution of the corresponding Hamiltonian matrix is given
in Fig. 2a (in which six pair of complex eigenvalues were
found to be purely imaginary). For the purpose of clarity,
Fig. 2b shows an enlarged view of the eigenvalue spread
near the imaginary axis and also shows the exact numerical
values of the imaginary eigenvalues.

According to Theorem 2 the above imaginary eigenval-
ues correspond to the location where the Re(¥{(s)) becomes
singular, Fig. 3 confirms this result, which shows the
eigenvalue spectrum of Re(¥(s}). As seen, Re(¥{s))
becomes singular at six frequency points (corresponding to
the imaginary eigenvalues of the Hamiltonian matrix).
Next, using the above information, passivity compensation
was performed with the method in [8] (Fig. 4). Fig. 5
shows the comparison of macromodel transient response
(in the presence of nonlinear terminations) with the SPICE
simulation of the original circuit, which match accurately.

VI. CONCLUSIONS

In this paper an algorithm is presented for efficient pas-
sive macromodeling of subnetworks characterized by tabu-
lated data. Also an efficient algorithm is presented for
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passivity check and identifying the locations where real- Fig. 2.(a), (b): Eigenvalue Spectrum of Hamiltonian Matrix

part of admittance matrix becomes singular, This informa-
tion is crucial for efficient post passivity compensation,
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