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Abstract - Passive macromodeling of microwave compo- 
nents, high-speed packages and interconnect modules charac- 
terized by simulated/measured data has generated immense 
interest during the recent years. This paper presents an efii- 
cient algorithm for addressing passivity of macromodels from 
simulated/measured data, based on linear formulation. Also 
one of the critical issues involved in such macromodels is the 
passivity check and compensation. For this purpose, a new 
theorem and an effkient algorithm is presented. Examples are 
presented to demonstrate the validity and efficiency of the 
proposed algorithm. 

I. INTRODUCTION 

Recently, characterization and simulation of linear 
subne;works based on measur~d/simulated (tabulated) 
data (obtained either directly from measurements or 
from rigorous full-wave electromagnetic simulation) 
has become a topic of intense research. Important 
applications of such a characterization include micro- 
wave devices, high-speed packages, vi&, nonuniform 
transmission lines and on-chip passive components, 
such as inductors and transformers [ll-[6]. However, 
transient simulation of such frequency-dependent tabu- 
lated data in the presence of nonlinear devices to Obtain 
a global electrical assessment is a CPU expensive pro- 
cess due to the mixed frequency/time problem. Promi- 
nent approaches to solve this difficulty [ll-[lo] are 
based on approximating the tabulated data through 
rational-functions and subsequently synthesizing a 
SPICE compatible macromodel/netlist from such an 
approximation. However, the primary challenge in such 
approaches is ensuring the passivity of the maromodel. 
Passivity is an important property, because stable but 
non-passive models may lead to unstable systems when 
connected to other passive components. 

Conventional approaches in the literature on impos- 
ing passivity constraints lead to nonlinear optimization 
formulation, which can be CPU expensive [2]. Alterna- 
tive approaches use constraints such as, every first or 
second order pole-residue pair must strictly conform to 
passivity relations, which is sufficient but not neces- 
sary, [3]. It is to be noted that, most practical circuits 
do not obey these conditions and strict enforcement of 
these conditions may lead to convergence problems, 
inaccurate and CPU expensive macromodels. Tech- 
niques such as the one in [5] formulate the macromodel 
synthesis problem as linear unconstrained problem. 

-In these algorithms [2]-[5], macromodels are checked 
for any passivity violation and compensated if neces- 
sary. Hence the success of these algorithms depends on 
the quality of the macromodel prior to post-processing, 
that is, the extent of their conforming to passivity con- 
ditions. Post-processing can be quite effective if the 
passivity violation is very minor; on the other hand, if 
the violation is significant, it can lead to inaccurate 
macromodels. Another critical issue involved here is the 
passivity check. Traditional approach for this purpose is 
based on frequency-sweep of eigenvalues of the real-part of 
the admittance matrix (Re(Y(s))) of the macromodel. How- 
ever, this approach suffers from several drawbacks, such as 
up to what frequency to sweep, how fine the sweep should 
be and how to identify the exact locations of violation. 

This paper describes an algorithm for passive macro- 
modeling of microwave subnetworks characterized by tab- 
ulated data, with the following new contributionsi 

1) A new set of linear passivity conforming constraints are 
presented to ensure macromodel passivity. ‘Since the 
constraints are linear, macromodel generation is 
highly CPU efficient as compared to using traditional 
nonlinear constraints. 

2) A new theorem is presented which enables systematic 
passivity check and compensation. It enables: (a) per- 
forming passivity check without requiring anyfrequency 
sweep of eigenvalues of Re(Y(s)), (b) indentifying e.xaCt 
locations of any negative eigenvalues, (c) identifying any 
negative eigenvalues of Re(Y(s)) independent of where 
they are occurring in the frequency spectrum. 

The new theorem is based on formulation of the Hamil- 
tonian matrix of the state-space equations representing the 
macromodel. The knowledge of the exact locations of neg- 
ative eigenvalues of Re(Y(s)) is very crucial as it greatly 
helps the passivity-compensation process. Numerical 
examples are presented to validate the efficiency and accu- 
racy of the proposed algorithm. 

II. PROBLEM FORM”LATION 

The tabulated data can be multi-port scattering (S), 
admittance (Y), impedance (Z). transmission (T) 01 
hybrid (H) parameters. For the ease of presentation, in 
this paper it is assumed that the Y-parameter data is given. 

, The admittance matrix of a m-port subnetwork can be writ- 
ten in terms of a rational-approximation as 
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Y(s) = [YJs$ Y,(s) = (% 
(bl) + (ps + ,,, + gJ$L) 

(bb’.“+ b’,‘.“s+ __. +bk’)sN) 
(i,je l...m) 

(1) 

The challenge here is to ensure both the accuracy and 
passivity of the multiport macromodel. The loss of mat. 
remodel passivity can be a serious problem because tran- 
Gent simulations may encounter artificial oscillations. A 
network with admittance matrix Y(s) is passive [51, iff, 

(a) Y(s*) = f(s), where ‘ * ’ is the complex conjugate 
operator. 

(b) Y(s) is*a positive real (PR) matrix, i.e., the product 
z”lY’(s ) + Y(s)]z t 0 for all complex values of s 
with Re(s) > 0 and any arbitrary vector Z. 

Condition (a) is automatically satisfied since the com- 
plex poles/residues of the transfer function are always con- 
sidered along with their conjugates, leading to only real 
coefficients in rational functions of Y(s) However, ensur- 
ing condition (b) is not easy. For the practical case of net- 
works with symmetric admittance matrices, condition (b) 
implies that: 

Real(Y(s)) = [y'(s*) + Y(s)]/2 = F(s) 

must be positive definite for all s with Re(s) > 0. 

(2) 

III. DEVELOPMENT OF THE PROPOSED ALGORITHM 

In order to ensure both accuracy and passivity of the 
macromodel a new algorithm is developed. The first 
step involves computation of multiport pole-set. The 
second step computes the residues, subject to certain 
linear constraints which help to ensure macromodel 
passivity. The third step checks for any possible passiv- 
ity violation and corrects in case of violation. A brief 
discussion of these steps is given below. 

Stepl: Computation of Multiport Dominant Pole-Set 

This, step uses the pole identification algorithm of the 
vector fitting approach [7] to obtain an accurate set of 
poles. Here, an initial guess of poles is considered and a 
scaling function is introduced. With this initial guess of 
poles, the scaled function is accurately fitted, from which 
an accurate set of poles are computed. The algorithm 
ensures that the multiport admittance matrix is evaluated 
based on common pole set. 

Step 2: Formulation of Residue Equations and Passivity 
Conforming Linear Constraints 

In this step, residues are computed such that the macro- 
model satisfies the passivity conditions outlined in section 
II. Straight-forward application of passivity constraints can 
lead to nonlinear optimization problem. In order to over- 

come this diff%xlty, the following linear constraints, which 
help to retain the passivity of the macromodel are pro- 
posed. Let w,,,.~ be the frequency conesponding to the 
highest given data point. Let the common pole set (P) in 
the ascending order be denoted as 

p = [PI>P2 ... P maro.Pmo*l....Pmo.~: 

(ml&,) < < < i”aS(pmox)) 

(~mdP,,,o) < W,,, < iw(Pma,l)) 
(3) 

Next, each Yij can be expressed using the pole-residue 
relation and the frequency response a: 

c.‘+ 

k”’ kh’ 
1 2 

k”’ 

S,-PI SKP2 
+ - = yl .‘(s*); 

Sh -P, 

Equating both the real and imaginary parts of (4) sepa- 
rately at all the data points, we can write 

where the subscripts r and e correspond to the renl and 
imaginary parts, respectively, for the corresponding 
parameters/formulations (vector K>’ also includes the 
direct.coupling constant c”‘). Equation (5) is solved sub- 
ject to the following new passivity conforming constraints: 

Since the computed model matches the tabulated data (it 
is assumed that the original data conforms to passivity con- 

ditions) accurately up to P”,,m. we have 
z*‘[Re(Y(s))]zL 0 for Rev(s) > 0, in the region 
(0 5 w 5 pnloxu) Condition-(6a) is necessary to ensure that 
z*‘[Re(Y(s))]z t 0 at s = - for Re(s) > 0. Constraint- 
(6b) will guarantee that the real put of driving point admit- 
tances remains greater than zero in the region 
(0 i w 5 w,,,) Conditionsd(c,d) help to enswe 
z”[Re(Y(s))]z>O for Re(s)> 0 in the region 

(P,,,” 5 w c -) 



Enforcing the above conditions and performing linear 
constrained optimization, will lead to passive macromod- 
els for most cases of practical measured/simulated data. It 
is important to note that, for macromodels thus generated, 
the post-processing or compensation requirement is very 
minimum. Also, since the constraints are linear, macro- 
model generation is highly CPU efficient. However, it is to 
be noted that, since the above constraints are not strict pas- 
sivity enforcing conditions, there may be minor chances of 
passivity violation, which may require post compensation. 
The details of passivity check and compensation (third 
step) are given in the next section. 

IV. PASSIVITY CHECK AND COMPENSATION 

New results are presented in this section which enable 
systematic passive check and compensation. The main fea- 
tures of these theorems are that, a) passivity check cm be 
performed without requiring anyfrequency sweep of eigen- 
values of Re(Y(s)j, b) can identify exact locations of any 
negative eigenvalues Re(Y(s)), independent of where they 
me occurring in the frequency spectrum. A brief discus- 
sion of the new approach is given below. Using the m-port 
p&-residue model (l), a state-space system with mini- 
mum realization [ 101 can be obtained as - 

*(I) = ax(l) +B”(r) At 9i”x” CE 9tmxn 
y(r) 7 cr(l)+D”(rj BE WX” DE cRmxm (7) 

Theorem 1: The minimum realized system (A, B, C, D) 
is passive iff the following Hamiltonian Matrix (M) [ll] 
has no imaginary eigenvalues, 

A -B(D +Lf-Ic B(D + Dye’ 

M= (8) 

-C’(D + Dye -A’+ C’(D + D’)-lBr 

If it is found that the matnx M in (8) has any imaginary 
eigenvalue, then the system is not passive. In this context, 
a new theorem is introduced, which helps to identify the 
exact locations at which real part of the transfer-function 
(admittance) nzatrix (F(s) - defined in (2)) becomes sin- 
gular (i.e. where its eigenvalues become zero). 

Theorem 2: duo,) is singular, iff jw,, is an imaginary 
eigenvalue of M , provided D + D’> o 

The detailed proof of above theorems is not given due to 
the lack of space. In brief, using (2), (7) and (8), and after 
cenain manipulations, it can be shown that 

der(D+D’)defC,ol-M) 
= dervo,-A)derO.w,+A’)der(FCiw)) 

(9) 

From (9) it is evident (under assumption that A has no 
imaginary eigenvalue) that, if jo, is an eigenvalue of M, 

then I is singular at 10,. Which implies that an imagi- 
nary eigenvalue of the Hamiltonian matrix M corresponds 
to the frequency at which F~O) is singular. Two succes- 
sive imaginary eigenvalues (while arranged in ascending 
order) of M define the frequency interval for which one of 
fh_e eigenvalues of FEW) remains negative. 

The information of the exact locations where an eigen- 
value of ~0”) becomes zero (and stat reversing its sign) 
is very crucial as its knowledge will greatly help the pas- 
sivity-compensation process. If a negative eigenvalue 
spectrum exists, it could be easily corrected by inserting 
additional artificial poles [5] and using the above informa- 
tion. Alternatively, the above information can be used 
to accurately define linear constraints for passivity 
compensation 181, details of which is not given here 
due to the lack of space. Having ensured the passivity 
of the macromodel, it ca+n be easily linked to nonlinear 
simulators for performing transient analysis. 

V. COMPUTATIONAL RESULTS 

The proposed algorithm was performed on measured Y- 
parameters (data is given up to 6GHz) of a 3-port distrib- 
uted subnetwork [5]. Fig. 1 shows the accuracy compar- 
son of the macromodel magnitude responses with the 
original data, and they match accurately. If we use the con- 
straint 6(b), the macromodel didn’t require any passivity 
compensation. However, to illustrate the proposed passiv- 
ity check algorithm of section III, we carried out the fitting 
process without using constraint 6(b), in which case the 
generated macromodel became non-passive. This was 
tested using Theorem-l, and the complete eig’envalue dis- 
tribution of the corresponding Hamiltonian matrix is given 
in Fig. 2a (in which six pair of complex eigenvalues were 
found to be purely imaginiuy). For the purpose of clarity, 
Fig. 2b shows an enlarged view of the eigenvalue spread 
near the imaginary axis and also shows the exact numerical 
values of the imaginary eigenvalues. 

According to Theorem 2 the above imaginary eigenval- 
ues correspond to the location where the Re(Y(sjj becomes 
singular. Fig. 3 confirms this result, which shows the 
eigenvalue spectrum of Re(Y(s)). As seen, Re(Y(sj) 
becomes singular at six frequency points (corresponding to 
the imaginary eigenvalues of the Hamiltonian matrix). 
Next, using the above information, passivity compensation 
was performed with the method in [X] (Fig. 4). Fig. 5 
shows the comparison of macromodel transient response 
(in the presence of nonlinear terminations) with the SPICE 
simulation of the original circuit, which match accurately. 

VI. CONCLUSIONS 

In this paper an algorithm is presented for efficient pas- 
sive macromodeling of subnetworks characterized by tabu- 
lated data. Also an efficient algorithm is presented for 
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passivity check and identifying the locations where real- 
part of admittance matrix becomes singular. This informa- 
tion is crucial for efficient post passivity compensation. 
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Fig. 2.(a), (b): Eigenvalue Spectrum of Hamiltonian Matrix 
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Fig. 3. Eigenvslue v/s freq. of Re(Y(s)) - with passivity violation 

Fig. 4. Eigenvalue v/s freq. of Re(Y(s)) - with eampeosation 

Fig. 1. Three-port admittance parameters 
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Fig. 5. Macromodel Transient Responses 
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